Lecture 04 - Pthreads and Simple Locks

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 11, 2012

Motivation Management Synchronization

Background

= Recall the difference between a processes and threads

= Threads are basically a light-weight process that piggy-back
on processes’ address space

= Traditionally (pre Linux 2.6) you had to use fork (for
processes) and clone (for threads)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation

History

= clone had a number of issues with POSIX compliance

= Poor support for signal handling, scheduling, and inter-process
synchronization primitives

= Mostly used fork in the past, which creates a new process

= Drawbacks?
= Benefits?

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

fork is Safer and More Secure Than Threads

= Each process has it's own virtual address space

= Memory pages are not copied, they are copy-on-write
= Therefore, uses less memory than you would expect

= Buffer overruns or other security holes do not expose other
processes

= |f a process crashes, the others can continue

= Example: In Chrome, each tab is a seperate process

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Threads are Easier and Faster

= Interprocess communication (IPC) is harder and slower than
interthread communication

= Need to use operating system utilities (pipes, semaphores,
shared memory, etc) instead of thread library

= Much higher startup, shutdown and synchronization cost

= Pthreads fix the issues of clone and provides a uniform
interface for most systems (focus of Assignment 1)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Appropriate Time to Use Processes

If your application follows these guidelines:
= Mostly independent with little or no communication
= The startup and shutdown costs are negligible to overall
runtime
= Want to be safer against bugs and security holes

For performance reasons, along with ease and consistency we’ll use
Pthreads (the same concepts apply to both)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Quick fork Usage

pid = fork ();

if (pid < 0) {
fork_error_function ();

} else if (pid = 0) {
child_function ();

} else {

}

parent_function ();

= fork produces a second copy of the calling process which
starts execution after the call

= The only difference is the return value, the parent gets the pid
of the child, the child gets 0

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Threads Offer a Speedup of 6.5

Here's a benchmark between fork and Pthreads on my laptop,
creating and destroying 50,000 threads

jon@riker examples master % time ./create_fork
0.18s user 4.14s system 34% cpu 12.484 total
jon@riker examples master % time ./create_pthread
0.73s user 1.29s system 107% cpu 1.887 total

Clearly Pthreads offer much lower overhead

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Assumptions

First we'll see how to use threads on “embarrassingly parallel
problems”

= Made up of mostly independent sub-problems (little
synchronization)

= Strong locality (little communication)

Later we'll see
= What problems can be parallelized (dependencies)

= Alternative parallelization patterns
(right now, just use one thread per sub-problem)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

POSIX Threads

= Available on most systems

= Windows has Pthreads Win32, but | wouldn't use
it—use Linux for this course

= API available by #include <pthread.h>

= Compile with pthread flag (gcc -pthread prog.c -o prog)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Creating Threads

int pthread_create(pthread_tx thread,
const pthread_attr_t* attr,
void* (*start_routine)(void=x*),
void* arg);

thread - creates a handle to a thread at pointer location

attr - thread attributes (NULL for defaults, more details later)
start_routine - function to start execution

arg - value to pass to start_routine

returns 0 on success, error number otherwise
(contents of *thread are undefined)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Creating Threads - Example

#include <pthread.h>
#include <stdio.h>

void* run(voidx*) {
printf(”In run\n");
}

int main() {
pthread_t thread;
pthread_create(&thread , NULL, &run, NULL);
printf(”In main\n");

}

Simply creates a thread and terminates
(usage isn't really right, as we'll see)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Waiting for Threads

int pthread_join(pthread_t thread,
void** retval)

thread - wait for this thread to terminate (thread must be joinable)
retval - stores exit status of thread (set by pthread_exit) to the
location pointed by *retval. If cancelled returns
PTHREAD_CANCELED. NULL is ignored.

returns 0 on success, error number otherwise

Only call this one time per thread! Multiple calls on the same
thread leads to undefined behaviour.

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Waiting for Threads - Example

#include <pthread.h>
#include <stdio.h>

void* run(voidx*) {
printf("In run\n");
}

int main() {
pthread_t thread;
pthread_create(&thread, NULL, &run, NULL);
printf(”In main\n");
pthread_join (thread, NULL);

This now waits for the newly created thread to terminate

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Passing Data to Threads... Wrongly

Consider this snippet

int i;
for (i = 0; i < 10; ++i)
pthread_create(&thread[i], NULL, &run, (void*)&i);

This is a terrible idea, why?

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Passing Data to Threads... Wrongly

Consider this snippet

int i;
for (i = 0; i < 10; ++i)
pthread_create(&thread[i], NULL, &run, (void*)&i);

This is a terrible idea, why?

@ The value of i will probably change before the thread executes

® The memory for i may be out of scope, and therefore invalid
by the time the thread executes

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Vlotivation Management Synchronization

Passing Data to Threads

What about
int i;
for (i = 0; i < 10; 4++i)

pthread_create(&thread[i], NULL, &run, (void=x)i);

void#* run(void* arg) {
int id = (int)arg;

This is suggested in the book, but a should carry a warning:

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Passing Data to Threads

What about
int i;
for (i = 0; i < 10; 4++i)

pthread_create(&thread[i], NULL, &run, (void=x)i);

void#* run(void* arg) {
int id = (int)arg;

This is suggested in the book, but a should carry a warning:

= Be careful between size mismatches between the arguments,
pointers are 4 bytes on a 32-bit machine and 8 bytes on a
64-bit machine, your data may overflow

= Sizes of variables also change between systems, for maximum
portability just use pointers through malloc

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Detached Threads

Joinable threads (the default) wait for someone to call
pthread_join before they release their resources

Detached threads release their resources when they terminate,
without being joined

int pthread_detach(pthread_t thread);

thread - marks the thread as detached
returns 0 on success, error number otherwise

Calling pthread_detach on an already detached that results in
undefined behaviour

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Thread Termination

void pthread_exit(void *retval);

retval - return value passed to function that calls pthread_join

start_routine returning is equivalent of calling pthread_exit with
that return value

pthread_exit is called implicitly when the start_routine of a
thread returns

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Other Thread Utilities

pthread_t pthread_self(void);
int pthread_equal(pthread_t tl, pthread_-t t2);
int pthread_once(pthread_once_tx once_control,

void (xinit_routine)(void));
pthread_once_t once_control = PTHREAD_ONCE_INIT;

pthread_self returns the handle of the currently running thread
Use pthread_equal if you're comparing 2 threads

If you want to run a section of code once, you need pthread once
(it's well named). It will run only once per once_control

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Attributes

By default, threads are joinable on Linux, but a more portable way
is to set thread attributes. There you can change:

= Detached or joinable state

= Scheduling inheritance

= Scheduling policy

= Scheduling parameters

= Scheduling contention scope
= Stack size

= Stack address

= Stack guard (overflow) size

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Attributes - Example

size_t stacksize;

pthread_attr_t attributes;
pthread_attr_init(&attributes);
pthread_attr_getstacksize(&attributes , &stacksize);
printf(”Stack size = %i\n", stacksize);
pthread_attr_destroy(&attributes);

Running this on my laptop produces:

jon@riker examples master % ./stack_size
Stack size = 8388608

Setting a thread state to joinable

pthread_attr_setdetachstate(&attributes ,
PTHREAD_CREATE_JOINABLE);

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Detached Thread Warning

#include <pthread.h>
#include <stdio.h>

void#* run(voidx*) {
printf("In run\n");
}

int main() {
pthread_t thread;
pthread_create(&thread , NULL, &run, NULL);
pthread_detach(thread);
printf(”In main\n");

}

When | run it, it just prints “In main”, why?

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Detached Thread Solution

#include <pthread.h>
#include <stdio.h>

void#* run(voidx*) {
printf("In run\n");
}

int main() {

pthread_t thread;

pthread_create(&thread , NULL, &run, NULL);

pthread_detach(thread);

printf(”In main\n");

pthread_exit(NULL); // This waits for all detached
// threads to terminate

}

Make the final call pthread_exit if you have any detached threads

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Vlotivation Management Synchronization

Threading Challenges

= Be aware of scheduling (you can also set affinity with pthreads
on Linux)

= Make sure the libraries you use are thread-safe
= Means that the library protects it's shared data

= Reentrant code is also safe, it means a program can have
more than one thread executing concurrently

= Example: In Assignment 1, we'll use rand_r instead of rand

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Mutual Exclusion

= Most basic type of synchronization

= Only one thread can access code protected by a mutex at a
time

= All other threads must wait until the mutex is free before they
can execute the protected code

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Creating Mutexes - Example

pthread_mutex_-t ml = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t m2;

pthread_mutex_init(&m2, NULL);

pthread_mutex_destroy(&ml);
pthread _mutex_destroy(&m2);

= Two ways to initialize mutexes - statically and dynamically

= |f you want to include attributes, you need to use the dynamic
version

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Mutex Attributes

= Protocol - specifies the protocol used to prevent priority
inversions for a mutex

= Prioceiling - Specifies the priority ceiling of a mutex
= Process-shared - Specifies the process sharing of a mutex
You can specify a mutex as process shared so that you can access

it between processes. In this case, you need to use shared memory
and mmap which we won't get into.

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Using Mutexes - Example

// code
pthread_mutex_lock(&ml);
// protected code
pthread_mutex_unlock(&ml);
// more code

= Everything within the lock and unlock is protected
= Be careful to avoid deadlocks if you are using multiple mutexes

= Also a pthread mutex_trylock if needed

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Example Problem

Recall dataraces occur when two concurrent actions access the
same variable and at least one of them is a write

static int counter = 0;

void* run(void* arg) {

for (int i = 0; i < 100; +i) {
++counter;
}
}
int main(int argc, char =xargv][])
{
// Create 8 threads
// Join 8 threads
printf("counter = %i\n"”, counter);
}

Is there a datarace in this example? If so, how would we fix it?

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Example Problem Solution

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER,;
static int counter = 0;

void* run(void* arg) {
for (int i = 0; i < 100; 4++i) {
pthread_mutex_lock(&mutex);
++counter;
pthread_mutex_unlock(&mutex);

}

int main(int argc, char =xargv][])
{
// Create 8 threads
// Join 8 threads
pthread_mutex_destroy(&mutex);
printf("counter = %i\n", counter);

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

volatile Keyword

= Used to notify the compiler that the variable may change
between lines of code

while (i 1= 255) {

volatile prevents this beening optimized to

int i = 0;

while (true) {

= Variable will not actually be volatile in the critical section
and only prevents useful optimizations

= Usually wrong unless there is a very very good reason for it

Lecture 04 - Pthreads and Simple Locks University of Waterloo

	Motivation
	Management
	Synchronization

