
Lecture 04 - Pthreads and Simple Locks
ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

January 11, 2012

Motivation Management Synchronization

Background

• Recall the difference between a processes and threads

• Threads are basically a light-weight process that piggy-back
on processes’ address space

• Traditionally (pre Linux 2.6) you had to use fork (for
processes) and clone (for threads)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

History

• clone had a number of issues with POSIX compliance
• Poor support for signal handling, scheduling, and inter-process

synchronization primitives

• Mostly used fork in the past, which creates a new process
• Drawbacks?
• Benefits?

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

fork is Safer and More Secure Than Threads

• Each process has it’s own virtual address space
• Memory pages are not copied, they are copy-on-write
• Therefore, uses less memory than you would expect

• Buffer overruns or other security holes do not expose other
processes

• If a process crashes, the others can continue
• Example: In Chrome, each tab is a seperate process

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Threads are Easier and Faster

• Interprocess communication (IPC) is harder and slower than
interthread communication

• Need to use operating system utilities (pipes, semaphores,
shared memory, etc) instead of thread library

• Much higher startup, shutdown and synchronization cost
• Pthreads fix the issues of clone and provides a uniform

interface for most systems (focus of Assignment 1)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Appropriate Time to Use Processes

If your application follows these guidelines:
• Mostly independent with little or no communication
• The startup and shutdown costs are negligible to overall

runtime
• Want to be safer against bugs and security holes

For performance reasons, along with ease and consistency we’ll use
Pthreads (the same concepts apply to both)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Quick fork Usage

p i d = f o r k () ;
i f (p i d < 0) {

f o r k e r r o r f u n c t i o n () ;
} e l s e i f (p i d == 0) {

c h i l d f u n c t i o n () ;
} e l s e {

p a r e n t f u n c t i o n () ;
}

• fork produces a second copy of the calling process which
starts execution after the call

• The only difference is the return value, the parent gets the pid
of the child, the child gets 0

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Threads Offer a Speedup of 6.5

Here’s a benchmark between fork and Pthreads on my laptop,
creating and destroying 50,000 threads

j o n @ r i k e r examples master % t ime . / c r e a t e f o r k
0 .18 s u s e r 4 .14 s system 34% cpu 12.484 t o t a l
j o n @ r i k e r examples master % t ime . / c r e a t e p t h r e a d
0 .73 s u s e r 1 .29 s system 107% cpu 1 .887 t o t a l

Clearly Pthreads offer much lower overhead

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Assumptions

First we’ll see how to use threads on “embarrassingly parallel
problems”

• Made up of mostly independent sub-problems (little
synchronization)

• Strong locality (little communication)

Later we’ll see
• What problems can be parallelized (dependencies)
• Alternative parallelization patterns

(right now, just use one thread per sub-problem)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

POSIX Threads

• Available on most systems

• Windows has Pthreads Win32, but I wouldn’t use
it—use Linux for this course

• API available by #include <pthread.h>

• Compile with pthread flag (gcc -pthread prog.c -o prog)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Creating Threads

i n t p t h r e a d c r e a t e (p t h r e a d t ∗ thread ,
c on s t p t h r e a d a t t r t ∗ a t t r ,
v o i d ∗ (∗ s t a r t r o u t i n e) (v o i d ∗) ,
v o i d ∗ arg) ;

thread - creates a handle to a thread at pointer location
attr - thread attributes (NULL for defaults, more details later)
start routine - function to start execution
arg - value to pass to start routine

returns 0 on success, error number otherwise
(contents of *thread are undefined)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Creating Threads - Example

#i n c l u d e <pth read . h>
#i n c l u d e <s t d i o . h>

v o i d ∗ run (v o i d ∗) {
p r i n t f (” I n run \n ”) ;

}

i n t main () {
p t h r e a d t t h r e a d ;
p t h r e a d c r e a t e (& thread , NULL , &run , NULL) ;
p r i n t f (” I n main\n ”) ;

}

Simply creates a thread and terminates
(usage isn’t really right, as we’ll see)

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Waiting for Threads

i n t p t h r e a d j o i n (p t h r e a d t thread ,
v o i d ∗∗ r e t v a l)

thread - wait for this thread to terminate (thread must be joinable)
retval - stores exit status of thread (set by pthread exit) to the
location pointed by *retval. If cancelled returns
PTHREAD CANCELED. NULL is ignored.

returns 0 on success, error number otherwise

Only call this one time per thread! Multiple calls on the same
thread leads to undefined behaviour.

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Waiting for Threads - Example

#i n c l u d e <pth read . h>
#i n c l u d e <s t d i o . h>

v o i d ∗ run (v o i d ∗) {
p r i n t f (” I n run \n ”) ;

}

i n t main () {
p t h r e a d t t h r e a d ;
p t h r e a d c r e a t e (& thread , NULL , &run , NULL) ;
p r i n t f (” I n main\n ”) ;
p t h r e a d j o i n (thread , NULL) ;

}

This now waits for the newly created thread to terminate

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Passing Data to Threads... Wrongly

Consider this snippet

i n t i ;
f o r (i = 0 ; i < 10 ; ++i)

p t h r e a d c r e a t e (& t h r e a d [i] , NULL , &run , (v o i d ∗)& i) ;

This is a terrible idea, why?

1 The value of i will probably change before the thread executes
2 The memory for i may be out of scope, and therefore invalid

by the time the thread executes

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Passing Data to Threads... Wrongly

Consider this snippet

i n t i ;
f o r (i = 0 ; i < 10 ; ++i)

p t h r e a d c r e a t e (& t h r e a d [i] , NULL , &run , (v o i d ∗)& i) ;

This is a terrible idea, why?

1 The value of i will probably change before the thread executes
2 The memory for i may be out of scope, and therefore invalid

by the time the thread executes

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Passing Data to Threads

What about
i n t i ;
f o r (i = 0 ; i < 10 ; ++i)

p t h r e a d c r e a t e (& t h r e a d [i] , NULL , &run , (v o i d ∗) i) ;

. . .

v o i d ∗ run (v o i d ∗ arg) {
i n t i d = (i n t) a rg ;

This is suggested in the book, but a should carry a warning:

• Be careful between size mismatches between the arguments,
pointers are 4 bytes on a 32-bit machine and 8 bytes on a
64-bit machine, your data may overflow

• Sizes of variables also change between systems, for maximum
portability just use pointers through malloc

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Passing Data to Threads

What about
i n t i ;
f o r (i = 0 ; i < 10 ; ++i)

p t h r e a d c r e a t e (& t h r e a d [i] , NULL , &run , (v o i d ∗) i) ;

. . .

v o i d ∗ run (v o i d ∗ arg) {
i n t i d = (i n t) a rg ;

This is suggested in the book, but a should carry a warning:

• Be careful between size mismatches between the arguments,
pointers are 4 bytes on a 32-bit machine and 8 bytes on a
64-bit machine, your data may overflow

• Sizes of variables also change between systems, for maximum
portability just use pointers through malloc

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Detached Threads

Joinable threads (the default) wait for someone to call
pthread join before they release their resources

Detached threads release their resources when they terminate,
without being joined

i n t p t h r e a d d e t a c h (p t h r e a d t t h r e a d) ;

thread - marks the thread as detached

returns 0 on success, error number otherwise

Calling pthread detach on an already detached that results in
undefined behaviour

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Thread Termination

v o i d p t h r e a d e x i t (v o i d ∗ r e t v a l) ;

retval - return value passed to function that calls pthread join

start routine returning is equivalent of calling pthread exit with
that return value

pthread exit is called implicitly when the start routine of a
thread returns

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Other Thread Utilities

p t h r e a d t p t h r e a d s e l f (v o i d) ;

i n t p t h r e a d e q u a l (p t h r e a d t t1 , p t h r e a d t t2) ;

i n t p t h r e a d o n c e (p t h r e a d o n c e t ∗ o n c e c o n t r o l ,
v o i d (∗ i n i t r o u t i n e) (v o i d)) ;

p t h r e a d o n c e t o n c e c o n t r o l = PTHREAD ONCE INIT ;

pthread self returns the handle of the currently running thread

Use pthread equal if you’re comparing 2 threads

If you want to run a section of code once, you need pthread once
(it’s well named). It will run only once per once control

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Attributes

By default, threads are joinable on Linux, but a more portable way
is to set thread attributes. There you can change:

• Detached or joinable state
• Scheduling inheritance
• Scheduling policy
• Scheduling parameters
• Scheduling contention scope
• Stack size
• Stack address
• Stack guard (overflow) size

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Attributes - Example

s i z e t s t a c k s i z e ;
p t h r e a d a t t r t a t t r i b u t e s ;
p t h r e a d a t t r i n i t (& a t t r i b u t e s) ;
p t h r e a d a t t r g e t s t a c k s i z e (& a t t r i b u t e s , &s t a c k s i z e) ;
p r i n t f (” Stack s i z e = %i \n ” , s t a c k s i z e) ;
p t h r e a d a t t r d e s t r o y (& a t t r i b u t e s) ;

Running this on my laptop produces:
j o n @ r i k e r examples master % . / s t a c k s i z e
Stack s i z e = 8388608

Setting a thread state to joinable
p t h r e a d a t t r s e t d e t a c h s t a t e (& a t t r i b u t e s ,

PTHREAD CREATE JOINABLE) ;

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Detached Thread Warning

#i n c l u d e <pth read . h>
#i n c l u d e <s t d i o . h>

v o i d ∗ run (v o i d ∗) {
p r i n t f (” I n run \n ”) ;

}

i n t main () {
p t h r e a d t t h r e a d ;
p t h r e a d c r e a t e (& thread , NULL , &run , NULL) ;
p t h r e a d d e t a c h (t h r e a d) ;
p r i n t f (” I n main\n ”) ;

}

When I run it, it just prints “In main”, why?

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Detached Thread Solution

#i n c l u d e <pth read . h>
#i n c l u d e <s t d i o . h>

v o i d ∗ run (v o i d ∗) {
p r i n t f (” I n run \n ”) ;

}

i n t main () {
p t h r e a d t t h r e a d ;
p t h r e a d c r e a t e (& thread , NULL , &run , NULL) ;
p t h r e a d d e t a c h (t h r e a d) ;
p r i n t f (” I n main\n ”) ;
p t h r e a d e x i t (NULL) ; // This w a i t s f o r a l l de tached

// t h r e a d s to t e r m i n a t e
}

Make the final call pthread exit if you have any detached threads

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Threading Challenges

• Be aware of scheduling (you can also set affinity with pthreads
on Linux)

• Make sure the libraries you use are thread-safe
• Means that the library protects it’s shared data

• Reentrant code is also safe, it means a program can have
more than one thread executing concurrently

• Example: In Assignment 1, we’ll use rand r instead of rand

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Mutual Exclusion

• Most basic type of synchronization

• Only one thread can access code protected by a mutex at a
time

• All other threads must wait until the mutex is free before they
can execute the protected code

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Creating Mutexes - Example

p t h r e a d m u t e x t m1 = PTHREAD MUTEX INITIALIZER ;
p t h r e a d m u t e x t m2 ;

p t h r e a d m u t e x i n i t (&m2, NULL) ;
. . .
p t h r e a d m u t e x d e s t r o y (&m1) ;
p t h r e a d m u t e x d e s t r o y (&m2) ;

• Two ways to initialize mutexes - statically and dynamically
• If you want to include attributes, you need to use the dynamic

version

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Mutex Attributes

• Protocol - specifies the protocol used to prevent priority
inversions for a mutex

• Prioceiling - Specifies the priority ceiling of a mutex
• Process-shared - Specifies the process sharing of a mutex

You can specify a mutex as process shared so that you can access
it between processes. In this case, you need to use shared memory
and mmap which we won’t get into.

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Using Mutexes - Example

// code
p t h r e a d m u t e x l o c k (&m1) ;
// p r o t e c t e d code
p t h r e a d m u t e x u n l o c k (&m1) ;
// more code

• Everything within the lock and unlock is protected
• Be careful to avoid deadlocks if you are using multiple mutexes
• Also a pthread mutex trylock if needed

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Example Problem

Recall dataraces occur when two concurrent actions access the
same variable and at least one of them is a write
. . .
s t a t i c i n t c o u n t e r = 0 ;

v o i d ∗ run (v o i d ∗ arg) {
f o r (i n t i = 0 ; i < 100 ; ++i) {

++c o u n t e r ;
}

}

i n t main (i n t argc , cha r ∗ a rgv [])
{

// Crea te 8 t h r e a d s
// J o i n 8 t h r e a d s
p r i n t f (” c o u n t e r = %i \n ” , c o u n t e r) ;

}

Is there a datarace in this example? If so, how would we fix it?

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

Example Problem Solution

. . .
static pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
s t a t i c i n t c o u n t e r = 0 ;

v o i d ∗ run (v o i d ∗ arg) {
f o r (i n t i = 0 ; i < 100 ; ++i) {

pthread mutex lock(&mutex);
++c o u n t e r ;
pthread mutex unlock(&mutex);

}
}

i n t main (i n t argc , cha r ∗ a rgv [])
{

// Crea te 8 t h r e a d s
// J o i n 8 t h r e a d s
pthread mutex destroy(&mutex);
p r i n t f (” c o u n t e r = %i \n ” , c o u n t e r) ;

}

Lecture 04 - Pthreads and Simple Locks University of Waterloo

Motivation Management Synchronization

volatile Keyword

• Used to notify the compiler that the variable may change
between lines of code

i n t i = 0 ;

w h i l e (i != 255) {
. . .

volatile prevents this beening optimized to
i n t i = 0 ;

w h i l e (t r u e) {
. . .

• Variable will not actually be volatile in the critical section
and only prevents useful optimizations

• Usually wrong unless there is a very very good reason for it
Lecture 04 - Pthreads and Simple Locks University of Waterloo

	Motivation
	Management
	Synchronization

